Padroes de Projeto

Criado por: Junior Silva
Data: 30/11/2024

Sumario

Introducao
Tecnologias e ferramentas utilizadas

* Sistemas operacionais
» Editores de cddigo recomendados
* Ferramentas de comunicacao

Servidores

* Hospedagem de backend
* Hospedagem de frontend
» Upload de arquivos

Infraestrutura

* Terraform
* Docker
* Docker Compose

Tecnologias por tipo de projeto

» Backend: NestJS, Node.js (Express ou Fastify)
* Frontend: Next.js, TailwindCSS, JavaScript, HTML
* Mobile: React Native (Expo)

Estruturas e nomenclaturas

» Estrutura de projetos (Frontend e Backend)
* Nomenclaturas de arquivos, pastas, classes e variaveis

Ferramentas

* Gerenciamento de banco de dados
* Log e monitoramento (Datadog, Sentry, OpenTelemetry, Grafana)
» Gerenciamento de backend (PM2)

Outros tépicos

* DNS (Cloudflare)

+ Gateway de pagamento (Stripe, Pagar.me)

* Bancos de dados (MySQL, PostgreSQL, SQLite)

* ORMSs (TypeORM, Knex)

* Mensageria e comunicacao em tempo real

* Cache, cron jobs e filas (Redis, Bull)

* Documentacdo (Swagger/OpenAPI, Obsidian, Notion)

» Testes (Frontend: Jest, Vitest, Cypress | Backend: Jest, Vitest)
* Gerenciamento de verséao (GitHub)

* Padrdes de commit (Commitizen, Husky, GitHub Workflow)

* Design (Figma, Penpot)
* Gestao de projetos (GitHub, Taiga)
* Integracéo e deploy continuos (CircleCl, GitHub Workflows)

Introducao

Este documento tem como obijetivo direcionar os membros do Oiticica Valley envolvidos
no setor de desenvolvimento para adotar ferramentas e praticas desejaveis na criacao de
sistemas web, desktop, mobile, backend, infraestrutura e outros.

Embora este documento recomende varias ferramentas e praticas, ndao é esperado que
todas sejam utilizadas em um Unico projeto. Em geral, sera necessario utilizar apenas
um subconjunto de ferramentas, definido de acordo com as necessidades do projeto.

Os padrdes de nomenclatura, estrutura de pastas e boas praticas descritos aqui sdo
obrigatérios para todos os projetos. Entretanto, a aplicacao de ferramentas especificas
sera limitada para evitar complexidade desnecessaria, especialmente em projetos
menores e mais simples.

Exemplo de Aplicacao Pratica

Vamos imaginar o desenvolvimento de um sistema bésico de estoque para uma
mercearia. As praticas e ferramentas selecionadas poderiam incluir:

Padrdes gerais para todos os setores:

1. Sistemas operacionais utilizados (ex.: Linux Ubuntu).

. Editores de codigo recomendados (ex.: VS Code).

. Ferramentas de comunicacéo utilizadas (ex.: Discord).
. Nomenclaturas (arquivos, pastas, classes, variaveis).
. Gerenciamento de verséao (ex.: GitHub).

. Padrbées de commit (ex.: Commitizen).

. Documentacéo (ex.: Notion).

8. Infraestrutura (ex.: Docker).

~NOo Ok N

Especificos para Frontend:

1. Estrutura de projetos Frontend.
2. Tecnologia (ex.: Next.js, TailwindCSS).
3. Testes (ex.: Jest, Cypress).

Especificos para Backend:

1. Estrutura de projetos Backend.

2. Tecnologia (ex.: NestJS, TypeORM).

3. Gerenciamento de banco de dados (ex.: PostgreSQL).
4. Testes (ex.: Jest).

Tecnologias e Ferramentas Utilizadas

Nesta secao, definimos as tecnologias e ferramentas essenciais para o desenvolvimento,
abrangendo sistemas operacionais, editores de codigo e ferramentas de comunicacéo.
Essas diretrizes garantem uniformidade, eficiéncia e uma base sdlida para o trabalho em
equipe.

Sistemas Operacionais
Os sistemas operacionais recomendados sao:

* Windows: Deve atender aos seguintes requisitos minimos:

* 20 GB de RAM
« SSD
* Processador Intel Core i3 (102 geracao ou superior)
* Versao original e licenciada
* MacOS: Qualquer versdo que atenda as necessidades do desenvolvedor.

* Linux: Qualquer distribuicdo com dominio comprovado. Caso contrario, o padréao
recomendado é o Ubuntu, com as configuragfes minimas:

+ 8 GB de RAM
« SSD

A escolha do sistema operacional deve considerar desempenho, confiabilidade e
conformidade com licencgas.

Editores de Cédigo Recomendados

O editor de cddigo padrao é o Visual Studio Code (VSCode), devido a sua ampla gama
de extensdes, suporte e eficiéncia.

No entanto, o desenvolvedor pode optar por qualquer outro editor de codigo, desde que:

» Seja original e licenciado para uso, ou
* Seja gratuito e legal para utilizacdo sem implicac@es juridicas.

A flexibilidade na escolha do editor permite que cada desenvolvedor trabalhe com a
ferramenta que melhor atenda as suas preferéncias e produtividade.

Ferramentas de Comunicacao

A comunicacao do time serd centralizada no Discord, especialmente no grupo da
comunidade Oiticica Valley.

+ Calls e Reunides: Todas as reunides e chamadas deverao ser realizadas no
Discord, promovendo organizacéao e integracdo no ambiente da comunidade.
* Mensagens e Documentos: Para troca de mensagens rapidas, documentacgao e
outros arquivos, podem ser utilizados:
* WhatsApp
* Telegram

« E-mail

Essa abordagem hibrida mantém o foco principal no Discord enquanto oferece
alternativas para necessidades especificas de comunicacao.

Ao seguir estas diretrizes, asseguramos que a equipe utilize ferramentas confiaveis e
apropriadas, otimizando o fluxo de trabalho e minimizando problemas técnicos.

Servidores

Nesta secao, detalhamos as solu¢cbes de hospedagem e armazenamento de
arquivos utilizadas no desenvolvimento de projetos, com recomendacdes para backend,
frontend e upload de arquivos, além de informacdes sobre bancos de dados.

Hospedagem de Backend

» Padrao: A maioria dos projetos backend serd hospedada na Vercel, pela sua
simplicidade e integracao eficiente com tecnologias modernas.

» Alternativa: Em casos especificos que demandem maior controle ou infraestrutura
personalizada, utilizaremos a DigitalOcean, que oferece maior flexibilidade e
recursos robustos.

Hospedagem de Frontend

O frontend também sera hospedado, preferencialmente, na Vercel, devido ao
suporte nativo para frameworks como Next.js e excelente desempenho em deploy
continuo.

Upload de Arquivos

Para gerenciamento de uploads e armazenamento de arquivos, a ferramenta
recomendada é o Cloudinary, por sua:

* Integracgédo facil com multiplos frameworks e linguagens
» Otimizac&o automatica de imagens e videos
» Escalabilidade para atender projetos de diferentes tamanhos

Bancos de Dados

* Padrao: A maioria dos bancos de dados sera configurada no UOLHost, devido a
sua acessibilidade e suporte técnico em portugués.

* Alternativa: Em casos que exijam maior desempenho, escalabilidade ou
personalizacao, utilizaremos DigitalOcean, que oferece solucdes gerenciadas para
bancos de dados como PostgreSQL e MySQL.

Resumo das Ferramentas

Tipo Ferramenta Situacao de Uso
Backend Hosting Vercel Padréo
Backend Hosting DigitalOcean Casos especificos
Frontend Hosting Vercel Padréo
Upload de Arquivos Cloudinary Padréo
Banco de Dados UOLHost Padréo
Banco de Dados DigitalOcean Casos especificos

Com essas defini¢cdes, garantimos flexibilidade e eficiéncia, adaptando cada solucéo as
necessidades especificas do projeto.

Infraestrutura

A infraestrutura € um componente fundamental para a criacéo de sistemas
escalaveis, confiaveis e faceis de gerenciar. Nesta secdo, abordaremos as principais
ferramentas que utilizamos para gerenciar, orquestrar e padronizar a infraestrutura de
projetos.

Terraform

O Terraform ¢é a ferramenta recomendada para gerenciamento de infraestrutura
como coédigo (laC). Com ele, é possivel:

* Criar, atualizar e versionar a infraestrutura de forma declarativa.

* Automatizar a criacdo de recursos em nuvens publicas (como AWS, Azure, Google
Cloud) e servigos como DigitalOcean.

» Garantir consisténcia entre ambientes (desenvolvimento, staging, producéo).

Recomendacao: Sempre versionar os arquivos de configuracdo do Terraform
no repositério do projeto para controle de mudancas.

Docker

O Docker é utilizado para criar e gerenciar contéineres, permitindo que aplicagdes
sejam executadas de forma isolada e consistente em qualquer ambiente. Ele € essencial
para:

* Padronizar o ambiente de desenvolvimento, evitando problemas como "funciona na
minha maquina".

* Reduzir o tempo de configuracéo e implantacdo de sistemas.

» Facilitar o escalonamento horizontal em ambientes de producéo.

Exemplo de uso comum: Criar um contéiner para rodar o backend com todas
as dependéncias pré-instaladas.

Docker Compose

O Docker Compose complementa o Docker, permitindo a orquestracao de
multiplos contéineres de forma simples. Ele é usado para:

» Configurar e gerenciar servicos interdependentes (ex.: backend, frontend, banco de
dados).

* Automatizar o inicio de todo o ecossistema do projeto com um unico comando.

« Simplificar o desenvolvimento local e o teste de sistemas complexos.

Exemplo de uso comum: Um arquivo docker-compose.yml que inicia o
backend, o banco de dados e o Redis em contéineres separados, configurados
para interagir entre si.

Resumo das Ferramentas

Ferramenta Propésito Situacao de Uso
Terraform Gerenciamento de infraestrutura como codigo Ambientes na huvem
Docker Criacdo e execucao de contéineres Desenvolvimento e producao
Docker Compose Orquestracdo de multiplos contéineres Desenvolvimento e testes

Com o uso dessas ferramentas, garantimos uma infraestrutura robusta e adaptavel,
alinhada as melhores praticas de DevOps e engenharia de software.

Tecnologias por Tipo de Projeto

Esta secéo apresenta as tecnologias recomendadas para cada tipo de projeto, com foco
em garantir eficiéncia, boas praticas e facilidade de manutencao.

Backend
Para o desenvolvimento backend, as tecnologias recomendadas séo:

* NestJS
Um framework Node.js progressivo, ideal para criar aplicacdes escalaveis e
altamente testaveis.

+ Utiliza conceitos como injecao de dependéncias e madulos, facilitando a
organizacéao do codigo.
» Oferece suporte nativo a Express ou Fastify como servidores HTTP.
* Indicado para projetos de média a grande complexidade.
* Node.js
Utilizado em projetos que nao necessitam de toda a estrutura do NestJS.

* Express: Um framework minimalista e flexivel, ideal para APIs simples e
rapidas.

* Fastify: Uma alternativa ao Express, focada em performance e menor
consumo de recursos.

Escolha do servidor:

* Use Express para projetos onde a simplicidade € uma prioridade.
» Use Fastify quando a performance for essencial.

Frontend
Para o desenvolvimento de interfaces web, as tecnologias recomendadas incluem:

* Next.js
Um framework React que oferece renderizacao hibrida (SSR e SSG), ideal para
projetos modernos.

* Suporte nativo a roteamento, otimizacdo de imagens e SEO.
* Excelente escolha para aplicacdes web rapidas e otimizadas.

* TailwindCSS
Uma biblioteca de classes utilitarias que facilita o desenvolvimento de interfaces

responsivas e personalizaveis.

* Reduz a dependéncia de CSS personalizado, acelerando o tempo de
entrega de layouts.
» JavaScript e HTML
Usados em conjunto para criar funcionalidades e estruturar o layout.

* Essenciais para qualquer projeto frontend, servindo como base de
desenvolvimento.

Recomendacao adicional: Sempre que possivel, siga as melhores praticas de
acessibilidade (WCAG) ao criar interfaces.

Mobile
Para o desenvolvimento mobile, a principal tecnologia recomendada é:

* React Native (Expo)
Uma plataforma robusta para o desenvolvimento de aplicativos moéveis
multiplataforma (iOS e Android).
* EXxpo: Facilita a configuracéo e execucao de projetos, especialmente para
desenvolvedores iniciantes ou equipes pequenas.
+ Componentes reutilizaveis e integracao com APIs nativas.
* Indicado para projetos que precisam de consisténcia entre plataformas.

Resumo das Tecnologias

Tipo de Projeto Ferramenta Propésito

Backend NestJS, Node.js APIs robustas e servicos de backend

Frontend Next.js, TailwindCSS Aplicacdes web modernas e responsivas

Mobile React Native (Expo) Desenvolvimento de aplicativos moveis multiplataforma

Com essas tecnologias, podemos criar projetos de alto desempenho, bem estruturados e
alinhados as necessidades de cada tipo de aplicacao.

Estruturas e Nomenclaturas

Nesta secao, definimos padrdes para a organizacéo de projetos e nomenclatura,
garantindo consisténcia, legibilidade e facilidade de manutencdo em todos os projetos
desenvolvidos.

Estrutura de Projetos

Backend (NestJS)
Para projetos backend, utilizaremos a estrutura padréo oferecida pelo NestJS. Essa
estrutura modular facilita a escalabilidade e organizac¢éo do codigo.

Exemplo de estrutura de pastas:

src/

}— modules/

|— users

| }— dto/

}— entities/
}— user.controller.ts
}— user.service.ts

I
I
I
| L— user.module.ts
L ..

}— config/
}— common/

}— main.ts
}— app.module.ts
I_ s

Frontend (Next.js)
Para projetos frontend, utilizaremos a estrutura padréo do Next.js, que organiza pastas e
arquivos baseados em paginas e componentes.

Exemplo de estrutura de pastas:

src/
|— pages/ # Paginas da aplicacéo
| |— index.tsx # Pagina inicial
| |— about.tsx # Exemplo de pagina
| L— apis # Rotas de API
|— components/ # Componentes reutilizaveis
|— styles/ # Estilos globais e CSS modules
— utils/ # Fungbes utilitarias
|— hooks/ # Hooks personalizados
}— public/ # Arquivos estaticos (imagens, fontes, etc.)
— e
Nomenclaturas

Arquivos e Pastas
» Utilizar o padrédo kebab-case para nomes de arquivos e pastas.

« Exemplo: user-controller.ts, order-service.ts.

Classes
» Utilizar o padrédo PascalCase para nomes de classes.
* Exemplo: UserService, OrderController.

Variaveis
+ Utilizar o padrdo camelCase para nomes de variaveis.
* Exemplo: userName, orderld.

Bancos de Dados
» Utilizar o padrédo snhake_case para nhomes de tabelas e colunas no banco de
dados.
* Exemplo: user_table, order_id.

JSON de Resposta e Validators
» Utilizar o padrdo camelCase para os campos de resposta JSON e validacoes.
* Exemplo:

"userName": "John Doe",

"orderId": 123

Padroes Resumidos

Item Padrao Exemplo
Arquivos e Pastas kebab-case user-service.ts
Classes PascalCase UserService, OrderEntity
Variaveis camelCase userName, orderld
Bancos de Dados shake_case user_table, order_id
JSON e Validators camelCase { "userName": "John Doe" }

Com essas defini¢cdes, asseguramos que todos 0s projetos mantém uma linguagem
universal, promovendo integragao e colaboracéo eficiente entre os membros da equipe.

Ferramentas

Nesta secao, apresentamos as ferramentas utilizadas para o gerenciamento de banco de
dados, monitoramento de logs e desempenho, e gerenciamento de backend, assegurando
eficiéncia e controle em nossos projetos.

Gerenciamento de Banco de Dados

DBeaver

O DBeaver € a ferramenta padréo para gerenciar bancos de dados. Ele oferece suporte a
diversas plataformas (PostgreSQL, MySQL, SQLite, etc.), com uma interface intuitiva para
executar consultas, visualizar esquemas, e gerenciar dados de forma eficiente.

Funcionalidades principais:

» Suporte a multiplos bancos de dados.

* Interface gréafica para execucdo de queries e visualizacdo de tabelas.
* Ferramentas para exportacédo e importacdo de dados.

* Compativel com plataformas locais e remotas.

Log e Monitoramento

Para garantir a confiabilidade dos sistemas, utilizamos um conjunto robusto de
ferramentas para logs e monitoramento:

Datadog
+ Utilizado para monitoramento de performance, rastreamento de métricas em tempo
real, e deteccdo de anomalias em aplicacdes e infraestrutura.
» Oferece integracdo com ferramentas de CI/CD, APIs e microservicos.

Sentry
» |deal para rastrear erros e excecdes em aplicacdes frontend e backend.
» Permite identificar, categorizar, e priorizar problemas criticos para resolucao.

OpenTelemetry
» Utilizado para rastreamento distribuido e coleta de métricas em sistemas
complexos.
* Integracdo com diversas plataformas de monitoramento, incluindo o Datadog.

Grafana
* Ferramenta de visualizacdo de dados e criacdo de dashboards personalizados.
» Utilizado para analisar logs e métricas em tempo real de diferentes fontes de
dados.

Gerenciamento de Backend

PM2

O PM2 ¢ a ferramenta utilizada para gerenciar processos de backend. Ela simplifica o
gerenciamento de aplicacdes Node.js em ambientes de producgéo, garantindo alta
disponibilidade e estabilidade.

Funcionalidades principais:

* Gerenciamento de processos com suporte a balanceamento de carga.
* Logs detalhados para analise de erros e desempenho.

* Monitoramento de métricas em tempo real.

* Suporte a reinicializacdo automatica em caso de falhas.

Resumo das Ferramentas

Categoria Ferramenta Finalidade
Gerenciamento de Banco DBeaver Visualizagéo e gerenciamento de dados
Log e Monitoramento Datadog Monitoramento de métricas e performance

Sentry Rastreamento de erros

OpenTelemetry Rastreio distribuido

Grafana Dashboards personalizados
Gerenciamento de Backend PM2 Controle de processos Node.js

Estas ferramentas sdo fundamentais para o desenvolvimento e operacao de aplicacdes
robustas, garantindo estabilidade e monitoramento eficaz.

Outros Tépicos

Nesta secao, detalhamos ferramentas, padrbes e praticas utilizadas em diferentes
aspectos do desenvolvimento de software, garantindo organizagéo, qualidade e
escalabilidade nos projetos.

DNS

* Cloudflare
Utilizamos o Cloudflare para gerenciamento de DNS, com beneficios como:
* Protecédo contra ataques DDoS.
* Aceleracédo de aplicacbes com cache de contetudo estatico.
* Certificados SSL gratuitos para comunicagao segura.

Gateway de Pagamento
» Stripe
Gateway de pagamento utilizado por sua robustez e suporte a multiplos métodos
de pagamento em escala global.
* Pagar.me
Solucéo preferida para operacdes no Brasil, com integracao simplificada e suporte
ao PIX, boleto bancario e cartdes de crédito.

Bancos de Dados

* MySQL: Utilizado em sistemas legados ou projetos que exigem alta
compatibilidade.

» PostgreSQL: Banco de dados principal devido a sua performance e suporte
avancado a tipos de dados.

* SQLite: Utilizado em testes e aplicacdes locais leves.

ORMSs

* TypeORM: Usado como padrdo para modelagem e consultas em bancos SQL,
especialmente com NestJS.
* Knex: Preferido para projetos que requerem maior flexibilidade em queries SQL.

Mensageria e Comunicagcdo em Tempo Real
Ferramentas para entrega de mensagens assincronas e comunicagcao em tempo real:

* Redis: Para mensagens rapidas em filas e caching.
* Socket.io ou WebSocket: Para implementa¢des de comunicagdo em tempo real.

Cache, Cron Jobs e Filas

* Redis: Solugéo principal para caching de dados e gerenciamento de sessdes.

» Bull: Utilizado para filas de trabalho, especialmente em projetos Node.js.

* Cron Jobs: Gerenciados com bibliotecas como node-cron ou pelo préprio sistema
operacional.

Documentacao

* Swagger/OpenAPI: Padrao para documentacao de APIs REST.
* Obsidian e Notion: Usados para documentagé&o interna e organizagéo de
conhecimento.

Testes

Frontend
« Jest e Vitest: Para testes unitérios.
* Cypress: Ferramenta principal para testes end-to-end.

Backend
» Jest e Vitest: Para testes unitarios e de integracao.

Gerenciamento de Versao

» GitHub: Plataforma principal para versionamento e colaboragcéo em projetos.

Padrées de Commit
« Commitizen: Ferramenta para padronizar mensagens de commit.
» Husky: Para execuc¢édo de hooks do Git, como linting pré-commit.
* GitHub Workflow: Para automacao de tarefas como lint, testes e deploy.

Design

* Figma: Ferramenta principal para criacao de interfaces e prototipagem.
* Penpot: Alternativa open-source para design colaborativo.

Gestao de Projetos

* GitHub Projects: Usado para gestédo de tarefas e acompanhamento de progresso.
* Taiga: Ferramenta adicional para gerenciamento de projetos ageis.

Integracao e Deploy Continuos (CI/ICD)

» CircleClI: Utilizado para pipelines mais complexos com mdltiplas etapas.
* GitHub Workflows: Preferido para automacao e deploy continuos integrados ao

GitHub.

Resumo
Categoria Ferramentas/Praticas

DNS Cloudflare
Gateway de Pagamento Stripe, Pagar.me
Bancos de Dados MySQL, PostgreSQL, SQLite
ORMs TypeORM, Knex
Mensageria Redis, Socket.io, WebSocket
Cache, Filas e Cron Jobs Redis, Bull, Cron Jobs

Documentacao Swagger/OpenAPI, Obsidian, Notion

Categoria Ferramentas/Praticas

Testes Jest, Vitest, Cypress

Gerenciamento de Versao GitHub, Commitizen, Husky, GitHub Workflows
Design Figma, Penpot

Gestao de Projetos GitHub Projects, Taiga

ClicD CircleCl, GitHub Workflows

Estas ferramentas e praticas fortalecem os processos de desenvolvimento, garantindo
eficiéncia, qualidade e colaboracao continua.

Finalizacao

Agradecemos por consultar esta documentacéo. Nosso objetivo € fornecer um guia claro
e detalhado para garantir que os processos de desenvolvimento, infraestrutura,
ferramentas e praticas estejam bem alinhados as necessidades do projeto e a cultura da
equipe.

Proximos Passos
1. Revisao Continua:

* Adocumentacao deve ser revisada regularmente para refletir atualizacbes
em ferramentas, processos ou tecnologias.
* Sugestdes de melhorias podem ser enviadas via nossos canais de
comunicacao oficiais.
2. Adaptacao e Crescimento:

* Projetos podem evoluir, e ajustes nas praticas e ferramentas documentadas
devem ser feitos para acompanhar novas demandas ou inovacoes.
3. Colaboracao:

» Toda a equipe €é incentivada a contribuir com feedback, ideias e boas
praticas que enriquecam este guia.

Contato e Suporte

* Canal de Comunicacao Principal: Discord da comunidade.

* E-mails de Suporte: Utilize os e-mails corporativos para questdes mais
especificas.

* Documentacdo Auxiliar: Reforce a consulta a documentos complementares no
Notion, Obsidian ou ferramentas relevantes.

Agradecimento

Esta documentacéo foi criada com o intuito de fortalecer a comunicacao e alinhamento
entre os membros da equipe.

Agradecemos a todos os envolvidos pelo esfor¢co e dedicacéo, e esperamos que esta guia
seja um recurso Util em cada etapa do desenvolvimento.

Versdo da Documentacgao

* Versao Atual: 1.0
+ Ultima Atualizacdo: 01/12/2024
* Responsavel pela Manutencao: [Junior Silva/Oiticica Valley Dev Team]

Continuamos a disposicao para esclarecer davidas e auxiliar em qualquer necessidade.
Vamos juntos construir solugdes incriveis!

	Introdução
	Exemplo de Aplicação Prática

	Tecnologias e Ferramentas Utilizadas
	Sistemas Operacionais
	Editores de Código Recomendados
	Ferramentas de Comunicação

	Servidores
	Hospedagem de Backend
	Hospedagem de Frontend
	Upload de Arquivos
	Bancos de Dados

	Resumo das Ferramentas
	Infraestrutura
	Terraform
	Docker
	Docker Compose

	Resumo das Ferramentas
	Tecnologias por Tipo de Projeto
	Backend
	Frontend
	Mobile

	Resumo das Tecnologias
	Estruturas e Nomenclaturas
	Estrutura de Projetos
	Backend (NestJS)
	Frontend (Next.js)

	Nomenclaturas
	Arquivos e Pastas
	Classes
	Variáveis
	Bancos de Dados
	JSON de Resposta e Validators

	Padrões Resumidos
	Ferramentas
	Gerenciamento de Banco de Dados
	DBeaver

	Log e Monitoramento
	Datadog
	Sentry
	OpenTelemetry
	Grafana

	Gerenciamento de Backend
	PM2

	Resumo das Ferramentas
	Outros Tópicos
	DNS
	Gateway de Pagamento
	Bancos de Dados
	ORMs
	Mensageria e Comunicação em Tempo Real
	Cache, Cron Jobs e Filas
	Documentação
	Testes
	Frontend
	Backend

	Gerenciamento de Versão
	Padrões de Commit

	Design
	Gestão de Projetos
	Integração e Deploy Contínuos (CI/CD)

	Resumo
	Finalização
	Próximos Passos
	Contato e Suporte
	Agradecimento
	Versão da Documentação

