
Padroes de Projeto

Criado por: Júnior Silva
Data: 30/11/2024



Sumario

Introdução

Tecnologias e ferramentas utilizadas

• Sistemas operacionais
• Editores de código recomendados
• Ferramentas de comunicação

Servidores

• Hospedagem de backend
• Hospedagem de frontend
• Upload de arquivos

Infraestrutura

• Terraform
• Docker
• Docker Compose

Tecnologias por tipo de projeto

• Backend: NestJS, Node.js (Express ou Fastify)
• Frontend: Next.js, TailwindCSS, JavaScript, HTML
• Mobile: React Native (Expo)

Estruturas e nomenclaturas

• Estrutura de projetos (Frontend e Backend)
• Nomenclaturas de arquivos, pastas, classes e variáveis

Ferramentas

• Gerenciamento de banco de dados
• Log e monitoramento (Datadog, Sentry, OpenTelemetry, Grafana)
• Gerenciamento de backend (PM2)

Outros tópicos

• DNS (Cloudflare)
• Gateway de pagamento (Stripe, Pagar.me)
• Bancos de dados (MySQL, PostgreSQL, SQLite)
• ORMs (TypeORM, Knex)
• Mensageria e comunicação em tempo real
• Cache, cron jobs e filas (Redis, Bull)
• Documentação (Swagger/OpenAPI, Obsidian, Notion)
• Testes (Frontend: Jest, Vitest, Cypress | Backend: Jest, Vitest)
• Gerenciamento de versão (GitHub)
• Padrões de commit (Commitizen, Husky, GitHub Workflow)



• Design (Figma, Penpot)
• Gestão de projetos (GitHub, Taiga)
• Integração e deploy contínuos (CircleCI, GitHub Workflows)



Introdução
Este documento tem como objetivo direcionar os membros do Oiticica Valley envolvidos 
no setor de desenvolvimento para adotar ferramentas e práticas desejáveis na criação de 
sistemas web, desktop, mobile, backend, infraestrutura e outros.

Embora este documento recomende várias ferramentas e práticas, não é esperado que 
todas sejam utilizadas em um único projeto. Em geral, será necessário utilizar apenas 
um subconjunto de ferramentas, definido de acordo com as necessidades do projeto.

Os padrões de nomenclatura, estrutura de pastas e boas práticas descritos aqui são 
obrigatórios para todos os projetos. Entretanto, a aplicação de ferramentas específicas 
será limitada para evitar complexidade desnecessária, especialmente em projetos 
menores e mais simples.

Exemplo de Aplicação Prática
Vamos imaginar o desenvolvimento de um sistema básico de estoque para uma 
mercearia. As práticas e ferramentas selecionadas poderiam incluir:

Padrões gerais para todos os setores:

1. Sistemas operacionais utilizados (ex.: Linux Ubuntu).
2. Editores de código recomendados (ex.: VS Code).
3. Ferramentas de comunicação utilizadas (ex.: Discord).
4. Nomenclaturas (arquivos, pastas, classes, variáveis).
5. Gerenciamento de versão (ex.: GitHub).
6. Padrões de commit (ex.: Commitizen).
7. Documentação (ex.: Notion).
8. Infraestrutura (ex.: Docker).

Específicos para Frontend:

1. Estrutura de projetos Frontend.
2. Tecnologia (ex.: Next.js, TailwindCSS).
3. Testes (ex.: Jest, Cypress).

Específicos para Backend:

1. Estrutura de projetos Backend.
2. Tecnologia (ex.: NestJS, TypeORM).
3. Gerenciamento de banco de dados (ex.: PostgreSQL).
4. Testes (ex.: Jest).



Tecnologias e Ferramentas Utilizadas
Nesta seção, definimos as tecnologias e ferramentas essenciais para o desenvolvimento, 
abrangendo sistemas operacionais, editores de código e ferramentas de comunicação. 
Essas diretrizes garantem uniformidade, eficiência e uma base sólida para o trabalho em 
equipe.

Sistemas Operacionais
Os sistemas operacionais recomendados são:

• Windows: Deve atender aos seguintes requisitos mínimos:

• 20 GB de RAM
• SSD
• Processador Intel Core i3 (10ª geração ou superior)
• Versão original e licenciada

• MacOS: Qualquer versão que atenda às necessidades do desenvolvedor.

• Linux: Qualquer distribuição com domínio comprovado. Caso contrário, o padrão 
recomendado é o Ubuntu, com as configurações mínimas:

• 8 GB de RAM
• SSD

A escolha do sistema operacional deve considerar desempenho, confiabilidade e 
conformidade com licenças.

Editores de Código Recomendados
O editor de código padrão é o Visual Studio Code (VSCode), devido à sua ampla gama 
de extensões, suporte e eficiência.

No entanto, o desenvolvedor pode optar por qualquer outro editor de código, desde que:

• Seja original e licenciado para uso, ou
• Seja gratuito e legal para utilização sem implicações jurídicas.

A flexibilidade na escolha do editor permite que cada desenvolvedor trabalhe com a 
ferramenta que melhor atenda às suas preferências e produtividade.

Ferramentas de Comunicação
A comunicação do time será centralizada no Discord, especialmente no grupo da 
comunidade Oiticica Valley.

• Calls e Reuniões: Todas as reuniões e chamadas deverão ser realizadas no 
Discord, promovendo organização e integração no ambiente da comunidade.

• Mensagens e Documentos: Para troca de mensagens rápidas, documentação e 
outros arquivos, podem ser utilizados:

• WhatsApp
• Telegram



• E-mail

Essa abordagem híbrida mantém o foco principal no Discord enquanto oferece 
alternativas para necessidades específicas de comunicação.

Ao seguir estas diretrizes, asseguramos que a equipe utilize ferramentas confiáveis e 
apropriadas, otimizando o fluxo de trabalho e minimizando problemas técnicos.



Servidores
Nesta seção, detalhamos as soluções de hospedagem e armazenamento de 

arquivos utilizadas no desenvolvimento de projetos, com recomendações para backend, 
frontend e upload de arquivos, além de informações sobre bancos de dados.

Hospedagem de Backend
• Padrão: A maioria dos projetos backend será hospedada na Vercel, pela sua 

simplicidade e integração eficiente com tecnologias modernas.
• Alternativa: Em casos específicos que demandem maior controle ou infraestrutura 

personalizada, utilizaremos a DigitalOcean, que oferece maior flexibilidade e 
recursos robustos.

Hospedagem de Frontend
O frontend também será hospedado, preferencialmente, na Vercel, devido ao 

suporte nativo para frameworks como Next.js e excelente desempenho em deploy 
contínuo.

Upload de Arquivos
Para gerenciamento de uploads e armazenamento de arquivos, a ferramenta 

recomendada é o Cloudinary, por sua:

• Integração fácil com múltiplos frameworks e linguagens
• Otimização automática de imagens e vídeos
• Escalabilidade para atender projetos de diferentes tamanhos

Bancos de Dados
• Padrão: A maioria dos bancos de dados será configurada no UOLHost, devido à 

sua acessibilidade e suporte técnico em português.
• Alternativa: Em casos que exijam maior desempenho, escalabilidade ou 

personalização, utilizaremos DigitalOcean, que oferece soluções gerenciadas para
bancos de dados como PostgreSQL e MySQL.

Resumo das Ferramentas

Tipo Ferramenta Situação de Uso
Backend Hosting Vercel Padrão
Backend Hosting DigitalOcean Casos específicos
Frontend Hosting Vercel Padrão
Upload de Arquivos Cloudinary Padrão
Banco de Dados UOLHost Padrão
Banco de Dados DigitalOcean Casos específicos

Com essas definições, garantimos flexibilidade e eficiência, adaptando cada solução às 
necessidades específicas do projeto.



Infraestrutura
A infraestrutura é um componente fundamental para a criação de sistemas 

escaláveis, confiáveis e fáceis de gerenciar. Nesta seção, abordaremos as principais 
ferramentas que utilizamos para gerenciar, orquestrar e padronizar a infraestrutura de 
projetos.

Terraform
O Terraform é a ferramenta recomendada para gerenciamento de infraestrutura 

como código (IaC). Com ele, é possível:

• Criar, atualizar e versionar a infraestrutura de forma declarativa.
• Automatizar a criação de recursos em nuvens públicas (como AWS, Azure, Google 

Cloud) e serviços como DigitalOcean.
• Garantir consistência entre ambientes (desenvolvimento, staging, produção).

Recomendação: Sempre versionar os arquivos de configuração do Terraform 
no repositório do projeto para controle de mudanças.

Docker
O Docker é utilizado para criar e gerenciar contêineres, permitindo que aplicações 

sejam executadas de forma isolada e consistente em qualquer ambiente. Ele é essencial 
para:

• Padronizar o ambiente de desenvolvimento, evitando problemas como "funciona na
minha máquina".

• Reduzir o tempo de configuração e implantação de sistemas.
• Facilitar o escalonamento horizontal em ambientes de produção.

Exemplo de uso comum: Criar um contêiner para rodar o backend com todas 
as dependências pré-instaladas.

Docker Compose
O Docker Compose complementa o Docker, permitindo a orquestração de 

múltiplos contêineres de forma simples. Ele é usado para:

• Configurar e gerenciar serviços interdependentes (ex.: backend, frontend, banco de
dados).

• Automatizar o início de todo o ecossistema do projeto com um único comando.
• Simplificar o desenvolvimento local e o teste de sistemas complexos.

Exemplo de uso comum: Um arquivo docker-compose.yml que inicia o 
backend, o banco de dados e o Redis em contêineres separados, configurados 
para interagir entre si.



Resumo das Ferramentas
Ferramenta Propósito Situação de Uso

Terraform Gerenciamento de infraestrutura como código Ambientes na nuvem
Docker Criação e execução de contêineres Desenvolvimento e produção
Docker Compose Orquestração de múltiplos contêineres Desenvolvimento e testes

Com o uso dessas ferramentas, garantimos uma infraestrutura robusta e adaptável, 
alinhada às melhores práticas de DevOps e engenharia de software.

Tecnologias por Tipo de Projeto
Esta seção apresenta as tecnologias recomendadas para cada tipo de projeto, com foco 
em garantir eficiência, boas práticas e facilidade de manutenção.

Backend
Para o desenvolvimento backend, as tecnologias recomendadas são:

• NestJS
Um framework Node.js progressivo, ideal para criar aplicações escaláveis e 
altamente testáveis.

• Utiliza conceitos como injeção de dependências e módulos, facilitando a 
organização do código.

• Oferece suporte nativo a Express ou Fastify como servidores HTTP.
• Indicado para projetos de média a grande complexidade.

• Node.js
Utilizado em projetos que não necessitam de toda a estrutura do NestJS.

• Express: Um framework minimalista e flexível, ideal para APIs simples e 
rápidas.

• Fastify: Uma alternativa ao Express, focada em performance e menor 
consumo de recursos.

Escolha do servidor:

• Use Express para projetos onde a simplicidade é uma prioridade.
• Use Fastify quando a performance for essencial.

Frontend
Para o desenvolvimento de interfaces web, as tecnologias recomendadas incluem:



• Next.js
Um framework React que oferece renderização híbrida (SSR e SSG), ideal para 
projetos modernos.

• Suporte nativo a roteamento, otimização de imagens e SEO.
• Excelente escolha para aplicações web rápidas e otimizadas.

• TailwindCSS
Uma biblioteca de classes utilitárias que facilita o desenvolvimento de interfaces 
responsivas e personalizáveis.

• Reduz a dependência de CSS personalizado, acelerando o tempo de 
entrega de layouts.

• JavaScript e HTML
Usados em conjunto para criar funcionalidades e estruturar o layout.

• Essenciais para qualquer projeto frontend, servindo como base de 
desenvolvimento.

Recomendação adicional: Sempre que possível, siga as melhores práticas de
acessibilidade (WCAG) ao criar interfaces.

Mobile
Para o desenvolvimento mobile, a principal tecnologia recomendada é:

• React Native (Expo)
Uma plataforma robusta para o desenvolvimento de aplicativos móveis 
multiplataforma (iOS e Android).

• Expo: Facilita a configuração e execução de projetos, especialmente para 
desenvolvedores iniciantes ou equipes pequenas.

• Componentes reutilizáveis e integração com APIs nativas.
• Indicado para projetos que precisam de consistência entre plataformas.

Resumo das Tecnologias
Tipo de Projeto Ferramenta Propósito
Backend NestJS, Node.js APIs robustas e serviços de backend
Frontend Next.js, TailwindCSS Aplicações web modernas e responsivas
Mobile React Native (Expo) Desenvolvimento de aplicativos móveis multiplataforma

Com essas tecnologias, podemos criar projetos de alto desempenho, bem estruturados e 
alinhados às necessidades de cada tipo de aplicação.



Estruturas e Nomenclaturas
Nesta seção, definimos padrões para a organização de projetos e nomenclatura, 
garantindo consistência, legibilidade e facilidade de manutenção em todos os projetos 
desenvolvidos.

Estrutura de Projetos

Backend (NestJS)
Para projetos backend, utilizaremos a estrutura padrão oferecida pelo NestJS. Essa 
estrutura modular facilita a escalabilidade e organização do código.

Exemplo de estrutura de pastas:

Frontend (Next.js)
Para projetos frontend, utilizaremos a estrutura padrão do Next.js, que organiza pastas e 
arquivos baseados em páginas e componentes.

Exemplo de estrutura de pastas:

Nomenclaturas

Arquivos e Pastas
• Utilizar o padrão kebab-case para nomes de arquivos e pastas.



• Exemplo: user-controller.ts, order-service.ts.

Classes
• Utilizar o padrão PascalCase para nomes de classes.

• Exemplo: UserService, OrderController.

Variáveis
• Utilizar o padrão camelCase para nomes de variáveis.

• Exemplo: userName, orderId.

Bancos de Dados
• Utilizar o padrão snake_case para nomes de tabelas e colunas no banco de 

dados.
• Exemplo: user_table, order_id.

JSON de Resposta e Validators
• Utilizar o padrão camelCase para os campos de resposta JSON e validações.

• Exemplo:

Padrões Resumidos
Item Padrão Exemplo

Arquivos e Pastas kebab-case user-service.ts
Classes PascalCase UserService, OrderEntity
Variáveis camelCase userName, orderId
Bancos de Dados snake_case user_table, order_id
JSON e Validators camelCase { "userName": "John Doe" }

Com essas definições, asseguramos que todos os projetos mantêm uma linguagem 
universal, promovendo integração e colaboração eficiente entre os membros da equipe.



Ferramentas
Nesta seção, apresentamos as ferramentas utilizadas para o gerenciamento de banco de 
dados, monitoramento de logs e desempenho, e gerenciamento de backend, assegurando
eficiência e controle em nossos projetos.

Gerenciamento de Banco de Dados

DBeaver
O DBeaver é a ferramenta padrão para gerenciar bancos de dados. Ele oferece suporte a
diversas plataformas (PostgreSQL, MySQL, SQLite, etc.), com uma interface intuitiva para
executar consultas, visualizar esquemas, e gerenciar dados de forma eficiente.

Funcionalidades principais:

• Suporte a múltiplos bancos de dados.
• Interface gráfica para execução de queries e visualização de tabelas.
• Ferramentas para exportação e importação de dados.
• Compatível com plataformas locais e remotas.

Log e Monitoramento
Para garantir a confiabilidade dos sistemas, utilizamos um conjunto robusto de 
ferramentas para logs e monitoramento:

Datadog
• Utilizado para monitoramento de performance, rastreamento de métricas em tempo

real, e detecção de anomalias em aplicações e infraestrutura.
• Oferece integração com ferramentas de CI/CD, APIs e microserviços.

Sentry
• Ideal para rastrear erros e exceções em aplicações frontend e backend.
• Permite identificar, categorizar, e priorizar problemas críticos para resolução.

OpenTelemetry
• Utilizado para rastreamento distribuído e coleta de métricas em sistemas 

complexos.
• Integração com diversas plataformas de monitoramento, incluindo o Datadog.

Grafana
• Ferramenta de visualização de dados e criação de dashboards personalizados.
• Utilizado para analisar logs e métricas em tempo real de diferentes fontes de 

dados.

Gerenciamento de Backend

PM2
O PM2 é a ferramenta utilizada para gerenciar processos de backend. Ela simplifica o 
gerenciamento de aplicações Node.js em ambientes de produção, garantindo alta 
disponibilidade e estabilidade.



Funcionalidades principais:

• Gerenciamento de processos com suporte a balanceamento de carga.
• Logs detalhados para análise de erros e desempenho.
• Monitoramento de métricas em tempo real.
• Suporte a reinicialização automática em caso de falhas.

Resumo das Ferramentas
Categoria Ferramenta Finalidade

Gerenciamento de Banco DBeaver Visualização e gerenciamento de dados
Log e Monitoramento Datadog Monitoramento de métricas e performance

Sentry Rastreamento de erros
OpenTelemetry Rastreio distribuído
Grafana Dashboards personalizados

Gerenciamento de Backend PM2 Controle de processos Node.js

Estas ferramentas são fundamentais para o desenvolvimento e operação de aplicações 
robustas, garantindo estabilidade e monitoramento eficaz.



Outros Tópicos
Nesta seção, detalhamos ferramentas, padrões e práticas utilizadas em diferentes 
aspectos do desenvolvimento de software, garantindo organização, qualidade e 
escalabilidade nos projetos.

DNS
• Cloudflare

Utilizamos o Cloudflare para gerenciamento de DNS, com benefícios como:
• Proteção contra ataques DDoS.
• Aceleração de aplicações com cache de conteúdo estático.
• Certificados SSL gratuitos para comunicação segura.

Gateway de Pagamento
• Stripe

Gateway de pagamento utilizado por sua robustez e suporte a múltiplos métodos 
de pagamento em escala global.

• Pagar.me
Solução preferida para operações no Brasil, com integração simplificada e suporte 
ao PIX, boleto bancário e cartões de crédito.

Bancos de Dados
• MySQL: Utilizado em sistemas legados ou projetos que exigem alta 

compatibilidade.
• PostgreSQL: Banco de dados principal devido à sua performance e suporte 

avançado a tipos de dados.
• SQLite: Utilizado em testes e aplicações locais leves.

ORMs
• TypeORM: Usado como padrão para modelagem e consultas em bancos SQL, 

especialmente com NestJS.
• Knex: Preferido para projetos que requerem maior flexibilidade em queries SQL.

Mensageria e Comunicação em Tempo Real
Ferramentas para entrega de mensagens assíncronas e comunicação em tempo real:

• Redis: Para mensagens rápidas em filas e caching.
• Socket.io ou WebSocket: Para implementações de comunicação em tempo real.

Cache, Cron Jobs e Filas
• Redis: Solução principal para caching de dados e gerenciamento de sessões.
• Bull: Utilizado para filas de trabalho, especialmente em projetos Node.js.
• Cron Jobs: Gerenciados com bibliotecas como node-cron ou pelo próprio sistema 

operacional.



Documentação
• Swagger/OpenAPI: Padrão para documentação de APIs REST.
• Obsidian e Notion: Usados para documentação interna e organização de 

conhecimento.

Testes

Frontend
• Jest e Vitest: Para testes unitários.
• Cypress: Ferramenta principal para testes end-to-end.

Backend
• Jest e Vitest: Para testes unitários e de integração.

Gerenciamento de Versão
• GitHub: Plataforma principal para versionamento e colaboração em projetos.

Padrões de Commit
• Commitizen: Ferramenta para padronizar mensagens de commit.
• Husky: Para execução de hooks do Git, como linting pré-commit.
• GitHub Workflow: Para automação de tarefas como lint, testes e deploy.

Design
• Figma: Ferramenta principal para criação de interfaces e prototipagem.
• Penpot: Alternativa open-source para design colaborativo.

Gestão de Projetos
• GitHub Projects: Usado para gestão de tarefas e acompanhamento de progresso.
• Taiga: Ferramenta adicional para gerenciamento de projetos ágeis.

Integração e Deploy Contínuos (CI/CD)
• CircleCI: Utilizado para pipelines mais complexos com múltiplas etapas.
• GitHub Workflows: Preferido para automação e deploy contínuos integrados ao 

GitHub.

Resumo
Categoria Ferramentas/Práticas

DNS Cloudflare
Gateway de Pagamento Stripe, Pagar.me
Bancos de Dados MySQL, PostgreSQL, SQLite
ORMs TypeORM, Knex
Mensageria Redis, Socket.io, WebSocket
Cache, Filas e Cron Jobs Redis, Bull, Cron Jobs
Documentação Swagger/OpenAPI, Obsidian, Notion



Categoria Ferramentas/Práticas
Testes Jest, Vitest, Cypress
Gerenciamento de Versão GitHub, Commitizen, Husky, GitHub Workflows
Design Figma, Penpot
Gestão de Projetos GitHub Projects, Taiga
CI/CD CircleCI, GitHub Workflows

Estas ferramentas e práticas fortalecem os processos de desenvolvimento, garantindo 
eficiência, qualidade e colaboração contínua.



Finalização
Agradecemos por consultar esta documentação. Nosso objetivo é fornecer um guia claro 
e detalhado para garantir que os processos de desenvolvimento, infraestrutura, 
ferramentas e práticas estejam bem alinhados às necessidades do projeto e à cultura da 
equipe.

Próximos Passos
1. Revisão Contínua:

• A documentação deve ser revisada regularmente para refletir atualizações 
em ferramentas, processos ou tecnologias.

• Sugestões de melhorias podem ser enviadas via nossos canais de 
comunicação oficiais.

2. Adaptação e Crescimento:

• Projetos podem evoluir, e ajustes nas práticas e ferramentas documentadas 
devem ser feitos para acompanhar novas demandas ou inovações.

3. Colaboração:

• Toda a equipe é incentivada a contribuir com feedback, ideias e boas 
práticas que enriqueçam este guia.

Contato e Suporte
• Canal de Comunicação Principal: Discord da comunidade.
• E-mails de Suporte: Utilize os e-mails corporativos para questões mais 

específicas.
• Documentação Auxiliar: Reforce a consulta a documentos complementares no 

Notion, Obsidian ou ferramentas relevantes.

Agradecimento
Esta documentação foi criada com o intuito de fortalecer a comunicação e alinhamento 
entre os membros da equipe.
Agradecemos a todos os envolvidos pelo esforço e dedicação, e esperamos que esta guia
seja um recurso útil em cada etapa do desenvolvimento.

Versão da Documentação
• Versão Atual: 1.0
• Última Atualização: 01/12/2024
• Responsável pela Manutenção: [Junior Silva/Oiticica Valley Dev Team]

Continuamos à disposição para esclarecer dúvidas e auxiliar em qualquer necessidade. 
Vamos juntos construir soluções incríveis!


	Introdução
	Exemplo de Aplicação Prática

	Tecnologias e Ferramentas Utilizadas
	Sistemas Operacionais
	Editores de Código Recomendados
	Ferramentas de Comunicação

	Servidores
	Hospedagem de Backend
	Hospedagem de Frontend
	Upload de Arquivos
	Bancos de Dados

	Resumo das Ferramentas
	Infraestrutura
	Terraform
	Docker
	Docker Compose

	Resumo das Ferramentas
	Tecnologias por Tipo de Projeto
	Backend
	Frontend
	Mobile

	Resumo das Tecnologias
	Estruturas e Nomenclaturas
	Estrutura de Projetos
	Backend (NestJS)
	Frontend (Next.js)

	Nomenclaturas
	Arquivos e Pastas
	Classes
	Variáveis
	Bancos de Dados
	JSON de Resposta e Validators


	Padrões Resumidos
	Ferramentas
	Gerenciamento de Banco de Dados
	DBeaver

	Log e Monitoramento
	Datadog
	Sentry
	OpenTelemetry
	Grafana

	Gerenciamento de Backend
	PM2


	Resumo das Ferramentas
	Outros Tópicos
	DNS
	Gateway de Pagamento
	Bancos de Dados
	ORMs
	Mensageria e Comunicação em Tempo Real
	Cache, Cron Jobs e Filas
	Documentação
	Testes
	Frontend
	Backend

	Gerenciamento de Versão
	Padrões de Commit

	Design
	Gestão de Projetos
	Integração e Deploy Contínuos (CI/CD)

	Resumo
	Finalização
	Próximos Passos
	Contato e Suporte
	Agradecimento
	Versão da Documentação


